支持向量域描述相关论文
分类在数据挖掘中是一项非常重要的任务,目前在商业领域得到广泛应用。分类的目的是根据数据集的特点构造一个分类函数或分类模型(也......
支持向量机是基于统计学习理论发展起来的一种新颖的机器学习方法,它是专门针对小样本数据而言的。支持向量机具有一些不同于其他......
目的 图像集匹配是当前模式识别领域研究的一个热点,其核心问题是如何对图像集合建模并度量两个模型的相似性,为此提出一种基于支......
研究了基于数据的区间数智能决策分析,提出了一种基于区间数的支持向量域多分类软计算方法,该方法可以直接处理特征空间为区间数的......
在高分辨一维距离像目标识别中,有效的对库内目标特征空间进行描述,并且对库外目标进行鉴别是一个关键问题。本文提出了一种基于非......
传统多类文本多分类算法存在计算量大和训练时间长的问题,为此利用黄金分割(Golden Selection,GS)和支持向量域描述(Support Vector D......
由于缺少对数据结构信息的考虑,现有的域描述型单类分类器得到的支撑面往往是次优解。因此,以支持向量数据描述(SVDD)算法为基础,通......
提出一种带故障样本的弹性双阈值SVDD在线故障诊断算法,该算法从故障样本使用、实时样本划分以及训练样本更新三个方面对传统在线S......
本文构造了一种带拒识能力的双层支持向量模型分类器.在训练学习过程中,首先对各类样本特征空间求取最小的包含球形边界,得到各类......
为提高钙化点检测速度,克服微钙化点检测中假阳性高的缺点,本文构造了一种迭代顺序滤波子空间约束的可拒识-支持向量机分类器用于......
为了提高多故障诊断中对新故障类别和新故障数据的适应性,提出了一种新的多故障诊断动态模型.该模型采用支持向量域描述算法(SVDD)对多......
为解决多分类支持向量机计算量大、训练时间长的问题,构造了支持向量域多分类器(MS-VDC).在训练阶段,运用支持向量域描述求得各类样......
针对群决策中专家权重的评价问题,提出一种基于支持向量域描述(SVDD)的确定方法.利用生成树的方法把判断矩阵进行一致性剖分,利用支......
文章在分析支持向量域描述的基础上发展了一类基于描述的学习分类器.该算法在训练时通过在高维特征空间中求取所描述的训练样本的......
将K型核函数和指数径向基核函数分别与径向基核函数组合成多核函数,并利用其构造出性能更加优越的支持向量域描述(SVDD)算法.将提......
为了提高支持向量机(support vector machines,SVM)和支持向量域分类器(support vector domain classifier,SVDC)的精度,减少SVM的训练时......
构造了一种空间支持向量域分类器(SSVDC).在训练阶段分别对正负两类样本进行支持向量域描述,根据描述边界将数据空间划分为互不相交......
提出一种基于支持向量域描述的图像集匹配方法.该方法首先通过支持向量机学习,将每个图像集合映射到高维特征空间,使用支持向量域......
基于纠错输出码(error-correcting output codes,ECOC)的多分类器实现旨在通过构造多个二分类器,根据各个二分类器的输出对测试样......
为克服微钙化点检测中假阳性高的缺点,本文构造了一种带拒识能力的双层支持向量模型分类器用于钙化点检测。对于输入模式,首先利用基......
为克服医学图像微钙化点检测中假阳性高的缺点,构造了一种带拒识能力的双层支持向量模型分类器,用于钙化点检测。检测时,首先利用......
支持向量域描述是一种有效的一分类数据描述方法,能够有效地对单一类别的数据进行表达,并能有效地降低负样本的干扰。应用支持向量......
针对支持向量域数据描述中的核参数选择及其决策边界规整问题,提出一种新的改进算法.该算法根据支持向量域数据描述本身的特点,利......
针对渐进直推式支持向量机(Progressive transductive support vector machines,PTSVM)算法回溯式学习多,训练速度慢,学习性能不稳定的......
提出了1种基于SVDD(support vector domain description)的集成剪枝算法.首先通过有放回的随机采样训练出若干个学习模型,接着通过支......
为加快支持向量域描述(SVDD)的训练速度,提出基于约减集的约简支持向量域描述算法RSVDD.由于描述边界仅由支持向量决定,且支持向量多分......
雷达高分辨距离像(HRRP)数据具有明显的多模分布特性.在雷达HRRP识别和拒判中,采用单个高斯核很难准确地描述HRRP数据的多模分布.针对该......
针对信息安全风险评估存在风险等级划分不准确和评估时间较长的问题,提出了一种基于支持向量域描述的信息安全风险评估模型.首先,......
为提高支持向量域分类器(SVDC)的分类精度和鲁棒性,提出基于K近邻(KNN)和支持向量域描述(SVDD)的分类器KNN-SVDD(KSVDD)。该分类器对单类内......
传统的机器学习假定训练域与测试域独立同分布,将由训练数据集得到的模型直接应用于测试集。但在实际应用中,这种假设并不一定成立,若......
道岔作为铁路线路连接的关键设备,一旦发生故障,轻则影响行车效率,重则危及行车安全,导致列车脱轨。长期以来,我国对铁路道岔设备......
提出基于支持向量域描述与距离测度的齿轮泵故障诊断方法.对齿轮泵各种工况下振动信号进行小波包分解,提取各频带能量百分比作为特......
针对两类分类问题中使用支持向量机(Support Vector Machines,SVM)训练时间长和支持向量域分类器(Support Vector Domain Classifi......
信用风险评估技术对于金融机构具有重要意义。机器学习技术能显著地提高信用风险评估的准确度与适应性。本文提出三种新的基于机器......
统计学习理论为研究小样本情况下机器学习问题提供了有力的理论基础。它使用结构风险最小化原则,综合了统计学习、机器学习和神经......
故障模式分类是模拟电路故障智能诊断方法的关键,它的研究对于提高故障诊断的准确率、保障诊断的有效性具有重要的意义。SVDD(支持......
精确、有效的图像识别技术是视频搜索、图像搜索、家用机器人等应用急待解决的问题。图像识别的研究分支包括物体检测、图像分类、......
为解决数据源中相似重复记录样本稀少问题,提出一种基于多目标蚁群优化的单类支持向量机相似重复记录分类检测方法。根据记录对中2......